On the basis of a comparison of the oxidation activity of a series of similar alcohols with varying pKa on gold electrodes in alkaline solution, we find that the first deprotonation is base catalyzed, and the second deprotonation is fast but gold catalyzed. The base catalysis follows a Hammett-type correlation with pKa, and dominates overall reactivity for a series of similar alcohols. The high oxidation activity on gold compared to platinum for some of the alcohols is related to the high resistance of gold toward the formation of poisoning surface oxides. These results indicate that base catalysis is the main driver behind the high oxidation activity of many organic fuels on fuel cell anodes in alkaline media, and not the catalyst interaction with hydroxide.